摘要:SnowFlake算法生成的ID大致上是按照时间递增的,用在分布式系统中时,需要注意数据中心标识和机器标识必须唯一,这样就能保证每个节点生成的ID都是唯一的。
概述
SnowFlake算法是Twitter设计的一个可以在分布式系统中生成唯一的ID的算法,它可以满足Twitter每秒上万条消息ID分配的请求,这些消息ID是唯一的且有大致的递增顺序。

原理
SnowFlake算法产生的ID是一个64位的整型,结构如下(每一部分用“-”符号分隔):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

1位标识部分,在java中由于long的最高位是符号位,正数是0,负数是1,一般生成的ID为正数,所以为0;
41位时间戳部分,这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年;
10位节点部分,Twitter实现中使用前5位作为数据中心标识,后5位作为机器标识,可以部署1024个节点;
12位序列号部分,支持同一毫秒内同一个节点可以生成4096个ID;

SnowFlake算法生成的ID大致上是按照时间递增的,用在分布式系统中时,需要注意数据中心标识和机器标识必须唯一,这样就能保证每个节点生成的ID都是唯一的。或许我们不一定都需要像上面那样使用5位作为数据中心标识,5位作为机器标识,可以根据我们业务的需要,灵活分配节点部分,如:若不需要数据中心,完全可以使用全部10位作为机器标识;若数据中心不多,也可以只使用3位作为数据中心,7位作为机器标识。


源码
/**
* twitter的snowflake算法 -- java实现
*
* @author rock
* @date 2016/11/26
*/
public class SnowFlake {

    /**
    * 起始的时间戳
    */
    private final static long START_STMP = 1480166465631L;

    /**
    * 每一部分占用的位数
    */
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数
    private final static long MACHINE_BIT = 5;  //机器标识占用的位数
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数

    /**
    * 每一部分的最大值
    */
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**
    * 每一部分向左的位移
    */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //数据中心
    private long machineId;    //机器标识
    private long sequence = 0L; //序列号
    private long lastStmp = -1L;//上一次时间戳

    public SnowFlake(long datacenterId, long machineId) {
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }

    /**
    * 产生下一个ID
    *
    * @return
    */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currStmp == lastStmp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                | datacenterId << DATACENTER_LEFT      //数据中心部分
                | machineId << MACHINE_LEFT            //机器标识部分
                | sequence;                            //序列号部分
    }

    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }

    private long getNewstmp() {
        return System.currentTimeMillis();
    }

}

可以写一代码测试一下,如下所示:
public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake(2, 3);
        for (int i = 0; i < (1 << 12); i++) {
            System.out.println(snowFlake.nextId());
        }

    }
循环生成2^12个ID,运行结果如下:
...
2099698216995
2099698216996
2099698216997
2099698216998
2099698216999
2099698217000
2099698217001
2099698217002
2099698217003
2099698217004
2099698217005
2099698217006
2099698217007
2099698217008
2099698217009
2099698217010
2099698217011
2099698217012
2099698217013
2099698217014
2099698217015
2099698217016
2099698217017
2099698217018
2099698217019
2099698217020
2099698217021
2099698217022
2099698217023
2099698217024
2099698217025
2099698217026
2099698217027
2099698217028
2099698217029
2099698217030
2099698217031
2099702411264
2099702411265
2099702411266
2099702411267
2099702411268
2099702411269
2099702411270
2099702411271
2099702411272
2099702411273
2099702411274
2099702411275
2099702411276
2099702411277
...

可以看到生成的ID都是递增的,而且都是唯一的。
源码已经提交在GitHub:https://github.com/beyondfengyu/SnowFlake


版权说明:如无特殊说明,文章均为本站原创,如需转载请注明出处

本文标题:twitter的雪花算法实现(Java)

本文地址:http://www.wolfbe.com/detail/201611/381.html

本文标签: snowflake 分布式ID java

相关文章

感谢您的支持,朗度云将继续前行

扫码打赏,金额随意

温馨提醒:打赏一旦完成,金额无法退还,请谨慎操作!

扫二维码 我要反馈 回到顶部